Skip to content

Git Branches

Branches allow you to develop features, fix bugs, or safely experiment with new ideas in a contained area of your repository.

You always create a branch from an existing branch. Typically, you might create a new branch from the default branch of your repository. You can then work on this new branch in isolation from changes that other people are making to the repository. A branch you create to build a feature is commonly referred to as a feature branch or topic branch.

Branches in Nutshell

To really understand the way Git does branching, we need to take a step back and examine how Git stores its data. Git doesn’t store data as a series of changesets or differences, but instead as a series of snapshots.

When you make a commit, Git stores a commit object that contains a pointer to the snapshot of the content you staged. This object also contains the author’s name and email address, the message that you typed, and pointers to the commit or commits that directly came before this commit (its parent or parents): zero parents for the initial commit, one parent for a normal commit, and multiple parents for a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and you stage them all and commit. Staging the files computes a checksum for each one (the SHA-1 hash we mentioned in What is Git?), stores that version of the file in the Git repository (Git refers to them as blobs), and adds that checksum to the staging area:

$ echo "one" > test.txt
$ git add test.txt
$ git commit -m 'Initial commit'

When you create the commit by running git commit, Git checksums each subdirectory (in this case, just the root project directory) and stores them as a tree object in the Git repository. Git then creates a commit object that has the metadata and a pointer to the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: three blobs (each representing the contents of one of the three files), one tree that lists the contents of the directory and specifies which file names are stored as which blobs, and one commit with the pointer to that root tree and all the commit metadata.

image

If you make some changes and commit again, the next commit stores a pointer to the commit that came immediately before it.

image

A branch in Git is simply a lightweight movable pointer to one of these commits. The default branch name in Git is master. As you start making commits, you’re given a master branch that points to the last commit you made. Every time you commit, the master branch pointer moves forward automatically.

image

Creating a New Branch

What happens when you create a new branch? Well, doing so creates a new pointer for you to move around. Let’s say you want to create a new branch called testing. You do this with the git branch command:

$ git branch testing

This creates a new pointer to the same commit you’re currently on.

image

How does Git know what branch you’re currently on? It keeps a special pointer called HEAD. In Git, this is a pointer to the local branch you’re currently on. In this case, you’re still on master. The git branch command only created a new branch — it didn’t switch to that branch.

image

You can easily see this by running a simple git log command that shows you where the branch pointers are pointing. This option is called --decorate.

$ git log --oneline --decorate
f30ab (HEAD -> master, testing) Add feature #32 - ability to add new formats to the central interface
34ac2 Fix bug #1328 - stack overflow under certain conditions
98ca9 Initial commit

You can see the master and testing branches that are right there next to the f30ab commit.

Switching Branches

To switch to an existing branch, you run the git checkout command. Let’s switch to the new testing branch:

$ git checkout testing

This moves HEAD to point to the testing branch.

image

What is the significance of that? Well, let’s do another commit:

$ echo "two" >> test.txt
$ git commit -a -m 'made a change'

image

This is interesting, because now your testing branch has moved forward, but your master branch still points to the commit you were on when you ran git checkout to switch branches. Let’s switch back to the master branch:

$ git checkout master

image

That command did two things. It moved the HEAD pointer back to point to the master branch, and it reverted the files in your working directory back to the snapshot that master points to. This also means the changes you make from this point forward will diverge from an older version of the project. It essentially rewinds the work you’ve done in your testing branch so you can go in a different direction.

Let’s make a few changes and commit again:

$ echo "three" >> test.txt $ git commit -a -m 'made other changes'

Now your project history has diverged. You created and switched to a branch, did some work on it, and then switched back to your main branch and did other work. Both of those changes are isolated in separate branches: you can switch back and forth between the branches and merge them together when you’re ready. And you did all that with simple branch, checkout, and commit commands.

image

You can also see this easily with the git log command. If you run git log --oneline --decorate --graph --all it will print out the history of your commits, showing where your branch pointers are and how your history has diverged.

$ git log --oneline --decorate --graph --all
* c2b9e (HEAD, master) Made other changes
| * 87ab2 (testing) Made a change
|/
* f30ab Add feature #32 - ability to add new formats to the central interface
* 34ac2 Fix bug #1328 - stack overflow under certain conditions
* 98ca9 initial commit of my project

Because a branch in Git is actually a simple file that contains the 40 character SHA-1 checksum of the commit it points to, branches are cheap to create and destroy. Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters and a newline).

Usually we create branch and want to immediatly switch to that. You can use another git helper command to do that.

git checkout -b <branch-name>

This will first create a new branch and then will checkout that.

Back to top